Compact p-adic Lie Groups.

In the following we will assume G is a locally analytic manifold over \mathbb{Q}_p. Our aim is to prove and discuss the following theorem:

Theorem 27.1: Let G be any p-adic Lie group; then there exist a compact open subgroup $G' \subseteq G$ and an integral valued p-valuation ω on G' defining the topology of G' such that we have:

i) (G', ω) is saturated;

ii) $\text{rank } G' = \dim G$.

We will divide this into several steps:

Step 1: Building up the chart.

Let $d = \dim G'$. We denote the identity of G by e and we pick a chart of G around e, call it

$$c = (U, \varphi, \mathbb{Q}_p),$$

and we let $\varphi(e) = 0$.

Recall that the multiplication map

$$m : G \times G \to G$$

is locally analytic and so there exists a neighborhood...
Let \(\mathcal{U} \) restrict the chart around \(e \) now and take
\[(Y, \varphi_{|Y}, Q^d_p)\].

We have a map:
\[
\varphi(v) \times \varphi(v) \xrightarrow{\varphi^{-1} \times \varphi^{-1}} V \times V \xrightarrow{m} U \xrightarrow{\varphi} \varphi(U)
\]

which a composition of locally analytic maps.

\[
F := \varphi \circ m \circ (\varphi^{-1} \times \varphi^{-1}) : \varphi(v) \times \varphi(v) \rightarrow \varphi(U)
\]
is locally analytic. Notice \(\varphi(v) \times \varphi(v) \subseteq Q^d_p \), \(\varphi(U) \subseteq Q^d_p \) are open sets.

Step 2: Using the right expansion.

By definition of locally analytic function for \(F : Q^d_p \times Q^d_p \rightarrow Q(U) \) around \(e \), we can find \(F_1, \ldots, F_d \) formal power series in \(x \) and \(y \) such that

\[
F(x, y) = (F_1(x, y), \ldots, F_d(x, y))
\]

and

\[
F_i(x, y) = \sum_{\alpha, \beta} C_{i, \alpha, \beta} x^\alpha y^\beta
\]

where \(X = (X_1, \ldots, X_d) \) and \(Y = (Y_1, \ldots, Y_d) \) and \(\alpha, \beta \) are \(d \)-tuples.
Recall that
\[F_i : \varphi(v) \times \varphi(v) \rightarrow \Omega_p \]
is such that
\[F_i \in \mathcal{F}_c(\Omega_p^d ; \Omega_p) \]
and the \(\Omega_i \) is the same for all \(1 \leq i \leq d \).

We emphasize three properties now of these functions:

- **Property 1:** Recall that the sets
 \[\mathbb{Z}_p^d \supseteq p \mathbb{Z}_p^d \supseteq p^2 \mathbb{Z}_p^d \supseteq p^3 \mathbb{Z}_p^d \supseteq \ldots \]
 form a system of compact open sets that are a neighborhood of the identity.
 Since \(\varphi(v) \) is a neighborhood of \(e \) we have that for big enough \(n \),
 \[p^n \mathbb{Z}_p^d \subseteq \varphi(v). \]

- **Property 2:**
 Pick any \(x \) and \(y \) in \(\Omega_p^d \) and consider
 \[\varphi^{-1}(x), \varphi^{-1}(y) \in V. \]
 Then \(\varphi^{-1}(x) \varphi^{-1}(y) \in \mathcal{U} \) and so, by definition of \(F \),
 \[\varphi(\varphi^{-1}(x) \varphi^{-1}(y)) = (F_1(x,y), \ldots, F_d(x,y)). \]
Property 3: Since $F_i \in \mathcal{F}_E (\mathbb{Q}_p ^{2d} ; \mathbb{Q}_p)$ we have that

$$\lim_{|l| + |l| \to \infty} \| C_i \alpha, \beta \|_p \mathcal{E} = 0.$$

For big enough n we have $p^{-n} \leq \mathcal{E}$ and so $F_i \in \mathcal{F}_{p^{-n}} (\mathbb{Q}_p ^{2d} ; \mathbb{Q}_p)$, so that we have

$$\lim_{|l| + |l| \to \infty} \| C_i \alpha, \beta \|_p p^{-n(|l| + |l|)} = 0,$$

that is,

$$\lim_{|l| + |l| \to \infty} p^{-\text{val}(C_i \alpha, \beta) - n(|l| + |l|)} = 0.$$

Equivalently, for big enough n,

$$\lim_{|l| + |l| \to \infty} (\text{val}_p(C_i \alpha, \beta) + n(|l| + |l|)) = \infty.$$

If we fix an n, then for big enough α, β we have

$$\text{val}_p(C_i \alpha, \beta) + n(|l| + |l|) \geq n$$

for every i, but it might fail for some α, β. The point is that we can actually, increasing n further, assure it doesn't.

Lemma: If we increase n, we have for all i, α, β that

$$\text{val}_p(C_i \alpha, \beta) + n(|l| + |l|) \geq n.$$
Proof of lemma:

Proving that

\[\text{val}(C; a, b) + n \| (1 \|_1 + 1 \|_1) \| \geq n \quad \forall a, b, i \]

it's equivalent to

\[\| F_i \|_{p-n} \leq p^{-n} \]

which is what we will prove. Denote by

\[\varepsilon_0 := \| F_i \|_{2} \]

Then

\[\| C; a, b \| \leq \varepsilon_0 \]

by definition of norm: and so

\[\| C; a, b \| \leq \varepsilon_0 \varepsilon^{ -|a| - |b|} \]

Now compute: Now pick \(n \) such that

\[p^n \geq \max \left(\frac{1}{\varepsilon}, \frac{\varepsilon_0}{\varepsilon^2} \right) \]

Compute then:

\[\| F_i \|_{p-n} = \max \left(p^{-n}, \max \left(\| C; a, b \|_{p-n}^{(1 \|_1 + 1 \|_1)} \right) \right) \]

\[\leq \max \left(p^{-n}, \max \varepsilon_0 \left(\frac{p^{-n}}{\varepsilon} \right)^{(1 \|_1 + 1 \|_1)} \right) \]

\[\leq \max \left(p^{-n}, \varepsilon_0 \left(\frac{p^{-n}}{\varepsilon} \right)^2 \right) \]

\[\leq p^{-n} \]

Comment on "proof":

while in class we realized here we put the \(p^{-n} \) because each \(F_i \) has an expansion

\[F_i(x, y) = x + y + \sum \text{higher order terms} \]

which separates the max among those of higher terms & those with \((1,0) \text{ & } (0,1) \) whose coefficients is 1.
Concretely, for big enough n, we have for all i, α, β:

$$V_1 \varphi(C_{i, \alpha, \beta}) + n(1\|a1 + 1\|b) \geq n. \quad (*)$$

Step 3: The inverse.

We have done the previous steps for the multiplication map but we can do them as well for the inverse map, which is also locally analytic.

Step 4: Building subgroups.

Because $p^n \mathbb{Z}_p^d \subseteq \varphi(V)$ we know that

$$\varphi^{-1}(p^n \mathbb{Z}_p^d) \subseteq V \subseteq G$$

are compact open subsets of G. Notice that if $x, y \in p^n \mathbb{Z}_p^d$ then

$$\varphi^{-1}(x) \varphi^{-1}(y) = \varphi^{-1}(F_1(x, y), \ldots, F_d(x, y))$$

and precisely the fact that $(*)$ happens implies

$$F_i(x, y) \in p^n \mathbb{Z}_p^d$$

So that

$$\varphi^{-1}(x) \varphi^{-1}(y) \in \varphi^{-1}(p^n \mathbb{Z}_p^d)$$

for large enough n. Repeating this with the inverse we conclude that:

For large enough n, $\varphi^{-1}(p^n \mathbb{Z}_p^d)$ are subgroups open compact of G.

Step 5: Rescaling the power series.

Pick now any of these large n, so that $\phi^{-1}(p^nZ_p)$ is a compact open subgroup of G, and define

$$\psi := \phi^\psi.$$

The multiplication map on this chart is given, in coordinates as:

$$\sum_{\alpha \in \Lambda} (p^{-n} C_{i,\alpha}) x^\alpha y^\beta.$$

in the i-th entry.

We proved in the lemma that

$$\|F\|_{p^{-n}} \leq p^{-n}.$$

That is, for all α, β,

$$\|C_{i,\alpha,\beta}\|_p \leq p^{-n}.$$

That is:

$$\|p^n\|_p \|C_{i,\alpha,\beta} p^n\|_p \leq p^{-n}.$$

implying

$$\|C_{i,\alpha,\beta} p^{-n}\|_p \cdot p^{-n(1\|d\|B)} \leq 1.$$
Repeating this by iteration we have that
\[
g \rightarrow g^p,
\]
\[
(g, h) \rightarrow [g, h]
\]

have convergent power expansions in around \(e \) in \(\Psi \), converging in all of \(\mathbb{Z}_p^d \) with coefficients in \(\mathbb{Z}_p \).

We define
\[
G_1 := \Psi^{-1}(p^{-1} \mathbb{Z}_p^d).
\]